ASUMBI GIRLS HIGH SCHOOL POST -MOCK 1 AUGUST/SEPTEMBER

2022

CHEMISTRY PP2 MS

1 (a) T is more reactive than Q; T has more energy levels than Q hence larger atomic radius; the valence electrons in T are less strongly attracted to the nucleus hence easier to lose;

Owtte

(b) Cannot conduct in solid state, but can conduct in solution and molten states; T has giant ionic structure; in solid state the ions are held in the crystal lattice; in solution and molten states, the ions are free and mobile for electrical conductivity;

(c) R has higher melting and boiling points than S; both have molecular structures; but R ahs larger molecules than S; hence more van der waals forces which need more heat to break (compared to S);

(d) $Q^{+}_{(g)} \rightarrow Q^{2+}_{(g)} + e;$

(e) (i) Atomic radius of T is larger than its ionic radius; T forms ions by losing electrons; leading to lose of an entire energy level; hence ions have fewer energy levels than atoms;

(ii) Atomic radius of P is smaller than the ionic radius; P ionizes by gaining electrons hence increased electron-electron repulsion;

(f) Element Q has a larger atomic radius than R; for the same number of energy levels R has more protons than Q hence a stronger effective nuclear pull of valence electrons towards the nucleus;

(g) Oxide of Q has a higher MP and BP than the oxide of R; Q oxide has a giant ionic structure with strong ionic bonds which require more heat to break; R has a simple molecular structure; with weak van deer waals forces which require less heat to break;

2 (a) (i) Different crystalline forms of then same element in the same physical state;

(ii) Monoclinic sulphur;

(iii) – Prismatic / hexagonal in shape;

- Stable above 96°C;
- Needle-like in shape;
- Pale yellow in colour;
- Has a melting point of 119°C;

- Has a density of 1.98g/cm³;

(b) (i) I. $S_{(s)} + Fe_{(s)} \rightarrow FeS_{(s)}$; Heat must be on the arrow

II. $\text{FeS}_{(s)} + 2\text{HCl}_{(aq)} \rightarrow \text{FeCl}_{2(aq)} + \text{H}_2\text{S}_{(g)};$

(ii) – Formation of a green solution;Colourless gas with a rotten egg smell;

(iii) I. Brown fumes; yellow deposits; H2S is oxidized to sulphur; HNO_3 is reduced to NO_2 and H_2O ;

II. Yellow solution changes tom a green solution, yellow solid // suspension; H_2S reduces Fe^{3+} to Fe^{2+} ; while H_2S is reduced to S;

(iv) – Production of sulphur and sulhuric (VI) acid;
Create inorganic sulphides for the manufacture of pharmaceuticals, pesticides, leather, dyes etc

3 (a) (i) A; (ii) D; (iii) B; (iv) B;

(b) (i) Structural functional isomer

Mark whole structure

(ii) Any one of: Methyl ethanoate;OR Ethylmethanoate;

(c) (i) A large molecule composed of smaller monomer units covalently bonded to each other in a repeating pattern;

(ii) Polyethene; Accept Polyethylene/polythene (iii) Equation

(d) (i) Hydrolysis/Substitution;

(ii) - Use concentrated strong base / NaOH / KOH / LiOH OR ethanolic / alcoholic strong base / NaOH / KOH / LiOH. / Use ethanol instead of water. / No water.
- Heat strongly;
Accept: Increase temperature;

4 (a) A – Roasting; B – Reduction;

(b) B - C/Coke; $C - H_2SO_{4(aq)} / Dilute sulphuric VI acid;$ $D - Dilute H_2SO_4;$

(c) $ZnO_{(s)} + C_{(s)} \rightarrow Zn_{(s)} + CO_{(g)}$

(d) Diagrams

Dip Zinc rods in a solution of ZnSO_{4(aq)};
Complete circuit where anode dissolves (impure Zinc) and pure Zinc is discharged at the cathode;

(e) - Cases in dry cells;

- Galvanizing iron sheets;

- Making alloys (Brass i.e. copper and Zinc) Any two)

5 (a) Calculation

$$\begin{split} \Delta H &= \Sigma \; \Delta_{f} H \; \text{products} - \Sigma \; \Delta_{f} H \; \text{reactants or a correct cycle} \\ Hence &= (2 \times -680) + (6 \times -269) - (x) = -2889 \\ x &= 2889 - 1360 - 1614 = -85 \; (kJ \; mol^{-1}) \end{split}$$

(b) (i) To reduce heat loss to the surrounding; *Reject to stop // prevent heat loss;*

(ii)Addition of acid into water will lead to an exothermic reaction; the heat energy evolved would cause vapourization of the acid which may cause acid burns; adding acid to water ensures the denser acid sinks to the bottom of the container so that no surface vapourization (which may be dangerous) occurs; *Owtte;*

(iii) – Avoid spurting of the acid;Ensure the acid sinks faster to the bottom of the container;

(iv) $\Delta H = MC\Delta T$; Total volume = 50 cm³+ 2cm⁻³ = 52cm³; *Note: addition of liquid into a liquid causes a change in volume;* Mass = 52 cm³ x 1gcm⁻³ = 52g = 0.051kg; Heat change = 0.052 x 4.2 x 1; =- 0.2184 kJ; Mass of sulphuric acid = 2 x 1.84 = 3.68g; Thus 3.68g = -0.2184 kJ; Then 98g = <u>98 x 0.2184</u> = -5.8085 kJ per mole; 3.68 *Penalize ¹/₂ mark for wrong or missing sign // SI unit;*

6 (a) (i) Galvanic (cell)/Voltaic (cell);

(ii) Indicates phase boundary / Interphase / phase separator;

(iii) $\operatorname{Fe}^{2^{+}}_{(aq)} \rightarrow \operatorname{Fe}^{3^{+}}_{(aq)} + e^{-;}$

(iv) Calculation: $E^{\Theta} = E^{\Theta}$ reduction $- E^{\Theta}$ oxidation $0.03V = E^{\Theta}$ reduction - 0.77 E^{Θ} reduction = 0.03 + 0.77 = + 0.80VThus X is silver;

Accept any other correct formula.

(b) (i) Solution or a melt that allow current to pass through and is decomposed. $\sqrt{1}$

(ii) I. G: Oxygen gas; II. H: Hydrogen gas;

(ii) Concentration increases because OH⁻ ions and H⁺ ions are discharged; hence continuous dissciationofwaterr from the electrolyte;

(iii) Calculation $2H^+_{(aq)} + 2e \rightarrow H_{2(g)}$ Q = 0.72 x 15 x 60C. = 738C; $2 \text{ x } 96,500\text{C} \rightarrow 24\text{dm}^3$ $738\text{C} \rightarrow 24 \text{ x } 738 \text{ dm}^3$ 193,000 $= 0.0918\text{dm}^3 (91.8\text{cm}^3)$

7 (a) (i) A substance formed when a cation from an alkali reacts with an anion from an acid;

(ii) (KAl(SO₄)₂.12H₂O; [Fe(NH₄)₂(SO₄).6H₂O; Na₂CO₃.NaHCO₃.2H₂O;

- (b) (i) Add water to the mixture and stir;
- Filter to obtain potassium nitrate solution as the filtrate;
- Heat the filtrate until saturated;
- Allow saturated solution to cool and crystallize;
- Pour off the mother liquor;
- Dry the crystals between filter papers;

(ii) Series of tests

Test	Procedure	Observations	Conclusion / explanation
1	To the green solid add drops of dilute nitric (V) acid / hydrochloric acid / sulphuric (VI) acid;	Effervescence of a colourless odourles gass that extinguishes a glowing splint;	Production of carbon (IV) oxide confirms presence of carbonate
2	To a sample of the solution from test 1 add aqueous sodium hydroxide dropwise till in excess	Blue nprecipitate that is insoluble in excess;	Formation of copper (II) hydroxide which is blue in colour;
3	To a sample / portion of solution from test 1 add drops of aqueous ammonia dropwise till in excess	Blue precipitate soluble in excess to form a deep blue solution;	Formation of blue copper (II) hydroxide with little ammonia which dissolves in excess ammonia to form a deep blue solution of tetra amine copper (II) ions;

(c) Calculation:

Mass of solvent: 50 - 2.7 = 47.3gThus if $47.3g \rightarrow 2.7g$ of salt; Then $100g \rightarrow \underline{100 \times 2.7} = 5.7082g/100g$ of solvet; 47.3