ASUMBI GIRLS HIGH SCHOOL POST -MOCK 1 AUGUST/SEPTEMBER 2022

CHEMISTRY PP3 MS

Table 1

	1	2	3
Final burette reading(cm ³)	24.5	24.5	24.5
Initial burette reading (cm ³)	0.0	0.0	0.0
Volume of acid used (cm ³)	24.5	24.5	24.5

Marking

- Complete table award; \checkmark

- Decimal consistency; ✓

- Accuracy ± 0.1 ; \checkmark

- School value; ✓

Principles of averaging:

Average volume = 24.5 + 24.5 + 24.5 = 24.5; \checkmark (½ mark) 3 = 24.5 cm³; \checkmark (½ mark)

(a) Moles of sodium hydroxide used Molarity of solution: Moles = <u>Mass /litre</u> RMM = $\underline{4} = 0.1$ molar $\underline{40}$ If 1000 cm³ $\rightarrow 0.1$ mole Then 25 cm³ $\rightarrow \underline{25 \times 0.1} = 0.0025$ moles; 1000

(ii) Moles of hydrochloric acid NaOH_(aq) + HCl_(aq) \rightarrow NaCl_(aq) + H₂O_(l) Mole ratio = 1:1; Thus moles of acid = 0.0025 moles;

(iii) Molarity of acid.

Volume of acid reacting = average titre in (a) e.g. 24.5 cm³ If 24.5 cm³ \rightarrow 0.0025 moles Then 1000 cm³ \rightarrow <u>1000 x 0.0025</u> = 0.1020 molar; 24.5

Table II

Marking: Complete table \checkmark - 1mark Decimal consistency \checkmark - 1 mark Accuracy \checkmark - 1mark School value \checkmark - 1mark Expected titre = 28.3 cm³

(c) Average volume

 $\frac{28.3 + 28.3 + 28.3}{3} = 28.3 \text{ cm}^3$

All 3 values within 0.1 of each other and used – 1mark

Only 2 within 0.1 of each other and used $-\frac{1}{2}$ mark Inconsistent value used -0 mark

(d) Answer in (b) (iii) x average volume 1000

Example:

Molarity of the acid calculated in (b) (iii) = 0.102 molar. Thus 1000 cm³ \rightarrow 0.102 moles

 $28.3 \text{ cm}^3 \rightarrow \underline{28.3 \text{ x } 0.102}_{1000} = 0.0028866 \text{ moles};$

(e) (i) Moles of carbonate that reacted: Using mole ratio, 2 moles of acid reacts with 1 mole of carbonate

Thus moles of carbonate reacting = $\frac{\text{answer in } (d) \times 1}{2}$

Example: 2 moles of acid \rightarrow 1 mole of carbonate Thus 0.0028866 moles of acid \rightarrow 0.0028866 x 1 2

$$= 0.0014433$$
 moles;

(ii) Molarity of carbonate 25 cm³ of carbonate $\rightarrow 0.0014433$ Then 1000 cm³ $\rightarrow 1000 \ge 0.001443 = 0.057732$ molar 25

(f) Mass of the salt mixture in gdm-3 250 cm³ \rightarrow 2.5g 1000 cm³ \rightarrow 1000 x 2.5 = 10g; 250

(g) Percentage of XCl in the mixture Mass of X_2CO_3 in 1 litre Molarity = 0.057732 molar / answer in (e) (ii). Mass = 0.057732 x 106 = 6.119592g; Mass of XCl = 10 - 6.119592 = 3.880408; Percentage = <u>3.880408</u> x 100 10 = 30.80408% Note: Use school based values.

Question 2

SOLUTION	S3 (cm²)	Water (cm ²)	Time (s)
Α	50	0	20
в	40	10	25
с	30	20	35
D	20	30	53
E	10	40	103

Marking:

- Complete table \checkmark

- Decimal consistency ✓

- Trend (increasing time) ✓

- School value ✓

Graph Trend:

Curve – 1mark

(b) As the concentration decreases ,the time increases \checkmark

(c) To keep the column of solution constant through the experiment \checkmark

Question 3 (a)

	Observations	Inferences
(a)	Colourless gas with a	NH ₄ ⁺ present;
	pungent smell;	
	Gas changes moist red litmus	
	paper blue, moist blue litmus	
	paper remains blue	
(b)	Dissolves to form a	- Soluble salt
	colourless solution;	present;
		Coloured ions
		absent // Fe ²⁺ , Fe ³⁺ ,
		Cu ²⁺ absent;
(c)	White precipitate formed	SO ₄ ²⁻ present;
(i)		
(ii)	White precipitate that	Cl- absent;
	persists on warming;	
(iii)	- White precipitate that	Zn^{2+}
	dissolves in excess;	
	- Colourless gas with a	NH4 ⁺ present;
	pungent smell on warming;	
	Colourless gas changes moist	
	red litmus paper to blue, blue	
	litmus paper remains blue;	
(e)	Dissolves to forma	Polar substance;
(i)	colourless solution	R – OH present;
(ii)	No effervescence	$R - COOH, H^+$,
		H ₃ O ⁺ absent;
(iii)	Colour of acidified	R – OH present;
	potassium dichromate (VI)	
	changes from orange to	
	green;	