\qquad

SCHOOL \qquad

MATHEMATICS

Instructions to students

a) Write your NAME, ADMISSION NUMBER and CLASS in the spaces provided above.
b) This paper consists of TWO SECTIONS: SECTION I and SECTION II.
c) Answer $\mathcal{A L L}$ the questions in SECTION I and ONLYFIVE questions from SECTION II.
d) All answers and working must be written on the question paper in the spaces provided below each question.
e) Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
f) Marks may be given for correct working even if the answer is wrong.
g) Non-programmable silent electronic calculators and KNEC Mathematical tables may be used except where stated otherwise.

For Examiner's use only

Section I 50 mks)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II (50 mks)

| $\mathbf{1 7}$ | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Total | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | |
| | | | | | | | | | |

1. Evaluate without using a calculator .

$$
\left.\begin{aligned}
& \frac{4 o f 20+10 \div 5 \times 6}{6 \times 9-4 \div 2+12} \\
& \text { BODMAS } \\
= & \frac{80+10 \div 5 \times 6}{6 \times 9-4 \div 2+12} \\
= & \frac{80+2 \times 6}{6 \times 9-2+12} M_{1}
\end{aligned} \right\rvert\,=\frac{80+12}{54-2+1 m_{7}}=\frac{92}{64}
$$

2. Write down the following number in words . 35,000,900,010
Thirty five billion, nine hundred thousand and ten. B
3. The GCD two numbers is 7 and their LCM I 140. If one of the numbers is 20 , find the other number.

$$
\begin{aligned}
& G C D=7 \\
& L C M=140
\end{aligned}
$$

$$
\begin{align*}
\text { Other number } & =\frac{7 \times 140}{20} \mathrm{~m} \tag{3mks}\\
& =\frac{980}{20} \\
& =49 \mathrm{Al}
\end{align*}
$$

(3mks)
4. a) Simplify the expression

$$
\begin{aligned}
& \frac{3 x+4}{4}+\frac{x+1}{2}-\frac{2 x+8}{3} \\
& =\frac{3(3 x+4)+6(x+1)^{M}-4(2 x+8)}{12} \\
& =\frac{9 x+12+6 x+6-8 x+8}{12} \\
& \begin{array}{l}
=\frac{\frac{7 x-14}{12}}{}=\frac{7 x-14}{12} \text { or } \frac{7(x-2)}{12}
\end{array}
\end{aligned}
$$

b) solve for X in the equation below

$$
\begin{aligned}
& 2(x+4)=14 \\
& 2 x+8=14-8 \mathrm{mM} \\
& 2 x=14-8 \\
& \frac{2 x}{2}=\frac{6}{2} \\
& x=3
\end{aligned}
$$

5. use a number line to work out the following
i. $\quad+(-4)+(-2)$
(2mks)
ii. $\quad(+6)+(+2)+(-5)$

6. The length of an arc of a circle is 88 cm . Find the radius of the circle if the arc substends an angle of 144° at the centre (take $\pi=z_{7}^{22}$.
 Length of on are $=\frac{\theta}{3 c_{c}}$ NMr

$$
\begin{aligned}
& 88=\frac{144}{360} \times \frac{M_{1}}{7} \times 2 \times r \\
& 88=\frac{88}{25} r
\end{aligned}
$$

$$
\begin{aligned}
& { }_{58}^{7} \times 88=\frac{8 / 8}{26} r \times \frac{3 k}{8,8} \mathrm{n} \\
& r=35 \mathrm{cM} A_{1}
\end{aligned}
$$

7. Ten men working six hours a day take 12 days to complete a job. How long willit take eight men working 12 hours a day to complete the same job?

10 Men $\rightarrow 6$ hours $\rightarrow 12$ dare \quad Days $=\frac{60}{8}$
Days $-\frac{10 \times 6 \times 12}{8 \times 12 \mathrm{M}}$

$$
=71 / 2 \text { day } \& A
$$

8. A shopkeeper made a loss of 20% by selling a trouser at sh 960 . What profit would he have made if he sold it at sh 1500 .
(3mks)

$$
\begin{aligned}
& 100 \%-20 \%=80 \%=\text { sh. } 1500-\text { sh } 1200 \\
&=\text { sh. } 300 \mathrm{M}
\end{aligned}
$$

$$
80 \%=\text { ksh. } 960
$$

$$
100 \% \times \mathrm{M}
$$

$$
\frac{100 \% \times 960}{80 \%}
$$

$$
\begin{aligned}
\text { Percentage } & =\frac{300}{1200} \times 100 \\
& =25 \% \mathrm{~A}
\end{aligned}
$$

$$
=1200
$$

9. If $a: b=2: 3$ and $b: c 5: 9$, find the ratio $a: c$
(2mks)

$$
\begin{gathered}
a: b: c \\
5(2: 3) \\
3(5: 9) M
\end{gathered}
$$

$a: b: c$

$$
10: 15
$$

$$
15: 27
$$

$$
a: c=10: 274
$$

10. Express recurring decimal 0.73 as a fraction.

$$
\begin{aligned}
\text { Let } r & =0.73 \\
10 r & =7.333 \\
100 & =73.333 \mathrm{M} \\
100 r & =73.333 \\
10 r & =7.333 \mathrm{~m} \\
90 r & =66
\end{aligned}
$$

$$
\begin{aligned}
& \frac{90 r}{90}=\frac{66}{90} \\
& r=66 / 90 \\
& r=11 / 15
\end{aligned}
$$

11. Three bells ring at interval ring of 40 minutes 45 minutes and 60 minutes. If they ring simultaneously at 6.30 am , at what time will they ring next together?.
(3mks)
$L \cdot C \cdot M$

2	40	45	60	
2	20	45	30	
2	10	45	15	M_{4}
3	5	45	13	
3	5	15	5	
5	5	5	5	

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 3 \times 3 \times 5 \\
& =\frac{660 \text { minuter }}{60 \text { mingle }} \times 1 \text { hour } \\
& =6 \text { hours } \\
& =\frac{6: 30}{12.30}=12.30 \text { P.M At. }
\end{aligned}
$$

12. The size of an interior angle of a regular polygon is $3 x^{\circ}$ while its exterior angle is $(x-20)^{\circ}$

$$
\begin{array}{l|l}
\begin{array}{l}
\text { Find the value of } x . \\
3 x^{\circ}+(x-20)^{\circ}=180^{\circ} \mathrm{My}
\end{array} & \frac{4 x^{\circ}}{4}=\frac{700}{4} \\
3 x^{\circ}+x^{\circ}-20^{\circ}=180^{\circ} & x=50^{\circ} \mathrm{A}, \\
4 x^{\circ}=180^{\circ}+20^{\circ} & x=
\end{array}
$$

b) the sum of interior angles of a regular is 1440°. Find the number of sides of the polygon hencenthe polygon.

$$
\begin{aligned}
& (2 n-4) 90^{\circ}=1440^{\circ} \\
& 180 n-360^{\circ}=1440^{\circ} \\
& 180 n=1440^{\circ}-360^{\circ} \\
& \frac{180 n}{180}=\frac{1860}{186} \\
& n=10 \text { sides }
\end{aligned}
$$

Hence the polygon is Decagon B.
13. In the figure below, lines AB and LM are parallel. Find the values of the angle marked a, b and c .
$c=a\left(\begin{array}{l}\text { alternate angles } \\ \text { on parallel by }\end{array}\right.$

(3mks)

$$
\begin{aligned}
& a=70^{\circ} \\
& b=70^{\circ} \\
& c=110^{\circ}
\end{aligned}
$$

$a=b$ (Directly oppentie
angles). $b=70^{\circ}$
14. Simplify

$$
\begin{aligned}
& \frac{a x-a y+b x-b y}{a+b} \\
= & \frac{a(x-y)+b(x-y)}{a+b} \mathrm{~m} \\
= & \frac{(a+b)(x-y)}{a+b} M \\
= & x-y \quad A_{1}
\end{aligned}
$$

15. a) A school water tank has a radius of 2.1 m and a height of 4.5 m . how many litres of water does it carry when full.

$$
\begin{aligned}
\text { Volume } & =\pi r^{2} h \\
& =\frac{22}{7} \times 2.1 \times 2.1 \times 4.5 \\
& =62.37 \mathrm{M}^{3} \mathrm{M}
\end{aligned}
$$

b) If the school uses 5000 litres of water a day approximately, how many days will the filled tank last.

1 Day $\bar{x} 5000$ Litres 62370 lives

$$
=\frac{10 a y \times 62370 \mathrm{~L}}{5000 \mathrm{~L}}
$$

$=12$ days. I1 hours A_{1}
16. A wooden block measuring 20 cm by 30 cm by 50 cm , has a mass 60 kg . find the density of this wood in $\mathrm{g} / \mathrm{cm}^{3}$.

$$
\begin{aligned}
\text { Volume } & =20 \mathrm{~cm} \times 30 \mathrm{~cm} \times 50 \mathrm{~cm} \\
& =30000 \mathrm{~cm}^{3} \mathrm{MH}
\end{aligned}
$$

$$
\left.\begin{aligned}
& \text { Mass }=60 \mathrm{~kg} \\
= & 1 \mathrm{~kg}=1000 \mathrm{~g} \\
= & 60 \mathrm{~kg} \\
= & \frac{60 \mathrm{~kg} \times 1000 \mathrm{~g}}{1 \mathrm{~kg} \mathrm{my}} \\
= & 60,000 \mathrm{~g}
\end{aligned}\right|^{\text {Density }}=\frac{\text { Mars }}{\text { volume }} .
$$

SECTION B
Answer any five questions only. (50marks)
17. A floor of a room is in the shape of a rectangle 3000 cm long by 300 cm wide. Square tiles of length 30 cm are to be filtered onto the flow
a) Calculate the number of tiles needed for the floor.

$$
\begin{aligned}
\text { No. of titer } & =\frac{3000 \mathrm{~cm} \times 300 \mathrm{~cm} \mathrm{M}}{30 \mathrm{~cm} \times 30 \mathrm{cmm}} \\
& =\frac{900,000 \mathrm{cn}^{2}}{900 \mathrm{~cm}^{2} \mathrm{~m}} \\
& =1000 \text { Tiles } \mathrm{A}
\end{aligned}
$$

b) A dealer wishes to buy enough tiles for fifteen such rooms . the tiles are packed in cartons . each carton containing 20 tiles. The cost of each carton is ksh 800. Calculate;
i. The cost of the tiles for the fifteen such rooms.

$$
\begin{aligned}
& \text { I carton }=20 \text { tiles } \\
& \times 1000 \text { ting, } M_{1} \\
& =\frac{1 \text { carton } \times 1000 \text { tiles }}{20+t i b s} \\
& =50 \text { cartons. } A_{1}
\end{aligned}
$$

$$
\text { 1carfon }=\text { ch. } 800
$$

socarton X m

$$
=8 h \cdot 40,000
$$

$$
\begin{aligned}
& 1 \text { room }=x h \cdot 40,000 \mathrm{MI} \\
& 1 \text { scone } X
\end{aligned}
$$

$$
=\frac{18 \text { rooks } \times \operatorname{sh} \cdot 40,000}{1 \text { rook }}
$$

$=k=h .600,000 \mathrm{~A}$.
ii. If in addition the dealer spends kshs 2,600 on transport. Calculate the total $\operatorname{cost}(1 \mathrm{mk})$

$$
\begin{aligned}
\text { Total cost } & =\text { Cost of ties + Transport ort } \\
& =k s h \cdot 600,000+k \text { th } 2600 \text { B } \\
& =k s h \cdot 602,600
\end{aligned}
$$

18. Three towns X, Y, and Z are such that Y is 500 km on a bearing of 315° from $\mathrm{X} . \mathrm{Z}$ is on a bearing of 230 from X . given that the direction between Y and Z is 800 km .
a) Using a scale of 1 cm represent 100 km , draw a scale diagram to show the position of the towns.

$$
s-1
$$

$$
B_{1} \text { - Locate } Y
$$

$$
B_{1} \text { - borate } 2
$$

b) Find th bearing of ;
i. $\quad \mathrm{X}$ from Z .

$$
050^{\circ} \pm 1_{1} B_{1}
$$

ii. $\quad Z$ from Y

$$
190^{\circ} \pm 1^{B /}
$$

c) Use the scale drawing to find the distance from X to Z .
(2mks)

$$
\left.\begin{gathered}
x z=6.7 \pm 1 \mathrm{~cm} \\
1 \mathrm{~cm} \text { rep } 100 \mathrm{~km} \\
6.7 \mathrm{~cm} \text { bi ? }
\end{gathered} \right\rvert\, x z=670 \mathrm{~km} \text { Br }
$$

$$
\begin{aligned}
& X Y=\begin{array}{ll}
1 \mathrm{~cm} \text { nip } & (6 \mathrm{mks}) \\
& 100 \mathrm{KM} \\
500 \mathrm{~km}
\end{array} \\
& =5 \mathrm{~cm} \\
& \begin{aligned}
Y z=1 \mathrm{~cm} \text { dep } & 100 \mathrm{~km} \text { h } \\
\text { ? } & 800 \mathrm{~km}
\end{aligned} \\
& =8 \mathrm{~cm}
\end{aligned}
$$

19. (a) Solve the following simultaneous equation suing elimination method.

$$
\begin{aligned}
& 3 x+2 y=12 \\
& x+y=5 \\
& (3 x+2 y=12)^{\prime} \\
& (x+4 y=5)^{2} \\
& 3 x+2 y=12 \\
& 2 x+2 y=10
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
3 x+2 y=12 \\
2 x+2 y=10 \\
x=2 A 1
\end{array}
\end{aligned} \begin{gathered}
2+y=5-2 \\
y=3 A
\end{gathered}
$$

(b) Given that $a=5, b=10$ and $c=6$ solve the following equation.

$$
\begin{aligned}
& \frac{2 a^{2}-b}{3 c} \\
= & \frac{2\left(5^{2}\right)-10}{3 \times 6 \mathrm{MM}}
\end{aligned}
$$

$$
=\frac{(2 \times 25)-10}{18 \mathrm{my}}
$$

$$
=\frac{50-10}{18}=\frac{40}{189}
$$

$$
=20 / 9 \mathrm{~A}
$$

(c) Complete this table below and use it to draw the graph. given that $y=2 x+1$ (5 mks)

$$
\begin{array}{|c|c|c|c|c|}
\hline \mathrm{X} & -2 & 0 & 1 & 2 \\
\hline \mathrm{Y} & -3 & 1 & 3 & 5 \\
B_{2} \\
\end{array}
$$

20. Measurements of a maize field using a base line XY were recorded as shown below. (measurements are in metres)

$$
\text { To R } 80\left|\begin{array}{c|c}
\mathrm{Y} \\
240 & 160 \text { to } \mathrm{N} \\
200 & \\
120 & 80 \text { to M } \\
\mathrm{X}
\end{array}\right|
$$

a) Using a scale of 1 cm rep 40 m to draw the map of the maize field.(5 mks)

b) Find the area of the field in hectares.

$$
\begin{aligned}
A & =\frac{1}{2} \times 120 \times 80=4800 \mathrm{~m}^{2} \\
B & =1 / 2 \times(80+160) \times 120 \\
& =141 \\
C & =1 / 2 \times 200 \times 80=8000 \mathrm{~m}^{2} \\
D & =1 / 2 \times 80 \times 40=1600 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Total area } & =(4800+14400+8000+1600) \mathrm{m}^{2} \\
& =28,800 \mathrm{~m}^{2} \mathrm{mM}
\end{aligned}
$$

$$
\begin{aligned}
& =1 \mathrm{ha}=10,000 \mathrm{~m}^{2} \\
& ? \times 28,800 \mathrm{~m}^{2} \mathrm{~m}
\end{aligned}
$$

$$
=\frac{1 \mathrm{ha} \times 28,800 \mathrm{~m}^{2}}{10,000 \mathrm{~m}^{2}}
$$

$$
=2.88 \mathrm{ha} A_{1}
$$

21. (a) Using a ruler and a pair of compass only. Construct a triangle $A B C$ in which angle $\mathrm{BAC}=90^{\circ}, \mathrm{AC}=4 \mathrm{~cm}$ and $\mathrm{BC}=5 \mathrm{~cm}$ and draw a circle to pass through points A,B,C.(5 mks)

$$
\begin{aligned}
& B_{1} \text {-constmet } 90^{\circ} \\
& B_{1} \text {-Lime } B C \neq A C \\
& B_{1} \text { - Bisect any } \\
& \text { two sides } \\
& B_{1} \text { - } \text {-entity the } \\
& \text { centre. } \\
& B_{1} \text {-circle }
\end{aligned}
$$

(b) Find the area of the triangle ABC .

$$
A B=3 \mathrm{~cm}
$$

Area of triangle

$$
\begin{aligned}
A B C & =1 / 2 b h \mathrm{~m} \\
& =1 / 2 \times 4^{2} \times 3 \\
& =6.0 \mathrm{~cm}^{2} A_{1}
\end{aligned}
$$

(c) Measure the radius of the circle passing through points A, B and C and use it to find its area. (3 mks)
Radius of the circe $=2.5 \mathrm{~cm} \pm 0.1 B_{1}$

$$
\begin{aligned}
\text { Area } & =\pi r^{2} \\
& =\frac{22}{7} \times 2.5 \times 2.5 \mathrm{My} \\
& =19.64 \mathrm{~cm}^{2}
\end{aligned}
$$

22. A) A football match lasts 90 minutes with a break of 15 minutes at half-time. If a referee allows five minutes extra for injuries and stoppage, what time did the match kicked off it it ends at 4.30 pm .

$$
\text { Football match }=90 \mathrm{mins}+
$$

$$
\text { in } 4 \text { ming }
$$

(3mks)
(b) A services vehicle which left Mombasa for Nairobi at 1800 hrs has a puncture after travelling for 4 hrs 20 mins fixing a new tyre took 30 minutes . the vehicle then travelled for another 1 hour 20 minutes to reach Nairobi . At what time did it arrive. (4 mks)

 $=0010 \mathrm{his}$ or 12.40 O.
(c) the table below is a matatu timetable for journeys between towns A and D via towns B and C.

time	arrival	departure
A		0930 h
B	1045 h	1055 h
C	1230 h	1245 h
D	1400 h	

Use the table to answer the following questions
a) What time does the matatu depart from B ?.

1055 h B

b) How long does it take the matatu to travel from towns A to town D ?

$$
\begin{equation*}
1400 \mathrm{~h}-0930 \mathrm{~h}=4 \mathrm{~h} 30 \mathrm{minutes} \tag{2mks}
\end{equation*}
$$

23. During a certain month the exchange rates in a bank were as follows;

	Buying (Kish	Selling (Ksh)
1 US dollars	91.65	91.80
1 Euro	103.75	103.93

A tourist left Kenya to the United State with Ksh 1,000,000. On the airport he exchanged all the money to US dollars and spent 190 dollars on air ticket. While in US he spend 4500 dollars for upkeep and proceeded to Europe while in Europe he spent a total of 2000 Euros.
a) How many US dollars he had before spending on air ticket.

IUS Dollars $=91.80 \mathrm{ksh}$
10,00,000 k. ${ }^{\text {ll }} 1$
$=\frac{1 \mathrm{usj} \times 1000,000 \mathrm{kgh}}{91.80 \mathrm{kgh}}$
$=$ US dollars $10893.25 \mathrm{~A}_{1}$
b) Calculate amount of money he had before proceeding to Europe in Kenya shillings to

$$
\begin{aligned}
& \text { the nearest shillings. } \\
& \text { Air troket }=10,893 \cdot 24-190 \\
& =10703.25 \\
& \ln U S A=10703.25-4500 \mathrm{MM} \\
& =\text { US \& } 6203.25^{\prime} \mathrm{m} \\
& =k s h .568,528 \quad A_{1}
\end{aligned}
$$

Converting to ksh.

$$
\begin{aligned}
& \text { LOSS }=k s h \cdot 91.65 \\
& \text { US } \$ 6302.25 \mathrm{X} \quad \mathrm{M}
\end{aligned}
$$

c) How many money in Euro's did he remain at the end of the journey. (4 mks)

$$
\begin{aligned}
& \text { Euro }=\text { Meh. } 103.93 \\
& X \text { Neh. } 568528 \mathrm{M} \\
&= \frac{1 \text { Eur } \times k \text { Nh. } 568528}{\text { Fsh. } 103.93 \mathrm{M}} \\
&= 5470.30 \text { Runs }
\end{aligned}
$$

Expenditure in Europe $=2000 \mathrm{~B}$

$$
\begin{aligned}
& =5470 \cdot 30-2000 \mathrm{my} \\
& =3470 \cdot 30 \text { Euros } \mathrm{Al}_{1}
\end{aligned}
$$

24. Munyua spent $1 / 4$ of his net January salary on school fees. He spent $1 / 4$ of the remainder of electricity and water bills. He spent $1 / 9$ of wa remained on transport. If he finally has sh 3400 , calculate ;
a) His net January salary.

$$
\begin{aligned}
& \text { Fees } \rightarrow 1 / 4 \\
& \text { Water } \$ \text { slectindy }=3 / 4 \circ+\frac{1}{4}=3 / 16 \\
& 3 / 16+1 / 4=\frac{3+4}{16}=7 / 16 \\
& \text { Transport }=9 / 16 \times 1 / 9 \mathrm{~m} \\
&=1 / 16
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{16}+3 / 16+1 / 4=\frac{1+3+4 \mid}{16} \left\lvert\, \begin{array}{c}
(5 \mathrm{mks}) \\
\\
=8 / 16 \mathrm{~m} \\
16-8400 \times 2 / 1
\end{array}\right. \\
& \begin{aligned}
16 & =8 / 16 \\
& =1 / 2 \mathrm{ksh} 6,800 \mathrm{Al}
\end{aligned} \\
& 1 / 2 \longrightarrow 148 h .3400 \\
& 1
\end{aligned}
$$

$$
\text { school fees }=\frac{1}{4} \times 6,800=k=h \cdot 1700 A_{1}
$$

c) Money spent on transport .

$$
\text { Transport }=\frac{1}{16} \times 6800=k c h \cdot 42 c^{-A_{1}}
$$

d) Money spent on electricity and water bills.

$$
\begin{aligned}
& \text { Water of teofuct }=3 / 1 \mathrm{MM} \\
& 3 / 16 \times 6,800=\text { ksh. } 1275 \mathrm{~A}
\end{aligned}
$$

